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2.4 Matrix Inverses

Three basic operations on matrices, addition, multiplication, and subtraction, are analogs for matri-
ces of the same operations for numbers. In this section we introduce the matrix analog of numerical
division.

To begin, consider how a numerical equation ax = b is solved when a and b are known numbers.
If a =0, there is no solution (unless b =0). But if a # 0, we can multiply both sides by the inverse
al= (ll to obtain the solution x = a~'b. Of course multiplying by a~! is just dividing by a, and the
property of a~! that makes this work is that a~'a = 1. Moreover, we saw in Section 2.2 that the
role that 1 plays in arithmetic is played in matrix algebra by the identity matrix /. This suggests
the following definition.

Definition 2.11 Matrix Inverses

If A is a square matrix, a matrix B is called an inverse of A if and only if

AB=1 and BA=1

A matrix A that has an inverse is called an invertible matrix.8

\. J

Example 2.4.1

|
[a—

1

Showtha,tB:[ 1 0

} isa,ninverseofAz{(l) i}

Solution. Compute AB and BA.

ao=[9 1] 8]-[0 8] m-[ 18] ][0 %)

Hence AB =1 = BA, so B is indeed an inverse of A.

Example 2.4.2

|

0

Show that A = [ | 3

} has no inverse.
Solution. Let B = { Z z ] denote an arbitrary 2 x 2 matrix. Then

0 0][a b 0 0
AB—[1 3Hc d}_[a+3c b+3d]

so AB has a row of zeros. Hence AB cannot equal I for any B.

80nly square matrices have inverses. Even though it is plausible that nonsquare matrices A and B could exist
such that AB =1, and BA =1I,, where A is m x n and B is n X m, we claim that this forces n = m. Indeed, if m <n
there exists a nonzero column x such that Ax =0 (by Theorem 1.3.1), so x =I,x = (BA)x = B(Ax) = B(0) =0, a
contradiction. Hence m > n. Similarly, the condition AB = I, implies that n > m. Hence m =n so A is square.
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The argument in Example 2.4.2 shows that no zero matrix has an inverse. But Example 2.4.2
also shows that, unlike arithmetic, it is possible for a nonzero matrixz to have no inverse. However,
if a matrix does have an inverse, it has only one.

Theorem 2.4.1
If B and C are both inverses of A, then B=C.

Proof. Since B and C are both inverses of A, we have CA =1 = AB. Hence

B=IB=(CA)B=C(AB)=CI=C
H

If A is an invertible matrix, the (unique) inverse of A is denoted A~'. Hence A~! (when it exists)
is a square matrix of the same size as A with the property that

AA ' =1 and A lA=1

These equations characterize A~! in the following sense:

Inverse Criterion: If somehow a matrix B can be found such that AB=1 and BA =1,
then A is invertible and B is the inverse of A; in symbols, B=A"",

This is a way to verify that the inverse of a matrix exists. Example 2.4.3 and Example 2.4.4 offer
illustrations.

Example 2.4.3

IfA= { (1) :} }, show that A3 =7 and so find A~ L.
0 —1 0 —1 -1 1
. 2 _ _
Solution. We have A —[1 _1}[1 _1}—{_1 O},andso
-1 1[0 —1 1 0
3 A24 _ —
A_AA__—I 0_{1—1}_{01]_1

Hence A® =1, as asserted. This can be written as A?A =1 =AA?, so it shows that AZ is the
inverse of A. That is, A~ =A% = :} (1) )

a Z when
it exists. To state it, we define the determinant det A and the adjugate adj A of the matrix A as

follows:
a b .la b d —b
det{c d}—ad—bc, and adj{ d}_[ ]

C —C a

The next example presents a useful formula for the inverse of a 2 x 2 matrix A =
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Example 2.4.4

IfA= { i Z } , show that A has an inverse if and only if det A # 0, and in this case

Al =adjA

d

—C

Solution. For convenience, write e = det A =ad —bc and B= adj A = [ _Z ] . Then

AB = el = BA as the reader can verify. So if e # 0, scalar multiplication by % gives
A(lB)=1=(1B)A

Hence A is invertible and A~! = %B. Thus it remains only to show that if A~ exists, then
e#0.

We prove this by showing that assuming e = 0 leads to a contradiction. In fact, if e =0,
then AB = el = 0, so left multiplication by A~! gives A=!AB = A~'0; that is, IB =0, so

B = 0. But this implies that a, b, ¢, and d are all zero, so A =0, contrary to the assumption
that A~! exists.

2 4

33 then detA =2-8—4-(—3) =28 #0. Hence A is invertible and

As an illustration, if A =

8
3

The determinant and adjugate will be defined in Chapter 3 for any square matrix, and the
conclusions in Example 2.4.4 will be proved in full generality.

A7l = ﬁ adjA = % [ _‘21 } , as the reader is invited to verify.

Inverses and Linear Systems

Matrix inverses can be used to solve certain systems of linear equations. Recall that a system of
linear equations can be written as a single matrix equation

Ax=Db

where A and b are known and x is to be determined. If A is invertible, we multiply each side of the
equation on the left by A~! to get

A 'Ax=A"Tb
Ix=A"'b
x=A'b

This gives the solution to the system of equations (the reader should verify that x = A~'b really
does satisfy Ax =b). Furthermore, the argument shows that if x is any solution, then necessarily
x = A~ b, so the solution is unique. Of course the technique works only when the coefficient matrix
A has an inverse. This proves Theorem 2.4.2.
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Theorem 2.4.2

Suppose a system of n equations in n variables is written in matrix form as

Ax=Db

If the n x n coefficient matrix A is invertible, the system has the unique solution

x=A"'b

Example 2.4.5

S5x1 —3xp=—4

Use Example 2.4.4 to solve the system { Tx| A= 8

Solution. In matrix form this is Ax = b where A = { g _i } , X = [ il } ,and b = { _g } .
Then detA=5-4—(—3)-7=41, s0 A is invertible and A~! = - [
Example 2.4.4. Thus Theorem 2.4.2 gives

] 43][-47_ .7 8
x=4 b_41{—7 5 8 | ~ 4| 68

so the solution is x| = % and x, = 2_515'

.

An Inversion Method

If a matrix A is n x n and invertible, it is desirable to have an efficient technique for finding the
inverse. The following procedure will be justified in Section 2.5.

Matrix Inversion Algorithm

If A is an invertible (square) matrix, there exists a sequence of elementary row operations
that carry A to the identity matrix I of the same size, written A — I. This same series of row
operations carries I to A™'; that is, I — A~!. The algorithm can be summarized as follows:

[A T]—=[1 A7 ]

where the row operations on A and I are carried out simultaneously.
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Example 2.4.6

Use the inversion algorithm to find the inverse of the matrix

1

2
A= 11 -1
1

W

Solution. Apply elementary row operations to the double matrix

27 1|1 00
[AT]=|14 —-1/0 10
13 0(0 01
so as to carry A to I. First interchange rows 1 and 2.
1 4 -1/010
27 1|1 00
1 3 0(0O01

Next subtract 2 times row 1 from row 2, and subtract row 1 from row 3.

(1 4 -1 I 0
0 -1 3 -2 0
0O -1 1]0 -1 1

- O

Continue to reduced row-echelon form.

1 0 11| 4 =70
1 -3|-1 0
|00 —2(-1 1 1]

1002 2 4

010/} } 7

001+ 3 &
-3 -3 11

Hence A™! :% 1 1 —3 |, as is readily verified.

1 -1 -1

Given any n x n matrix A, Theorem 1.2.1 shows that A can be carried by elementary row
operations to a matrix R in reduced row-echelon form. If R =1, the matrix A is invertible (this
will be proved in the next section), so the algorithm produces A~'. If R # I, then R has a row of
zeros (it is square), so no system of linear equations Ax = b can have a unique solution. But then

A is not invertible by Theorem 2.4.2. Hence, the algorithm is effective in the sense conveyed in
Theorem 2.4.3.
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Theorem 2.4.3

If A is an n X n matrix, either A can be reduced to I by elementary row operations or it
cannot. In the first case, the algorithm produces A~'; in the second case, A~' does not exist.

Properties of Inverses

The following properties of an invertible matrix are used everywhere.

Example 2.4.7: Cancellation Laws

Let A be an invertible matrix. Show that:

1. If AB=AC, then B=C.

2. If BA = CA, then B=C.

Solution. Given the equation AB = AC, left multiply both sides by A~! to obtain
A~'AB=A"1AC. Thus IB = IC, that is B = C. This proves (1) and the proof of (2) is left to
the reader.

Properties (1) and (2) in Example 2.4.7 are described by saying that an invertible matrix can be
“left cancelled” and “right cancelled”, respectively. Note however that “mixed” cancellation does
not hold in general: If A is invertible and AB = CA, then B and C may not be equal, even if both
are 2 x 2. Here is a specific example:

3] o3 e (1]

Sometimes the inverse of a matrix is given by a formula. Example 2.4.4 is one illustration; Exam-
ple 2.4.8 and Example 2.4.9 provide two more. The idea is the Inverse Criterion: If a matrix B can
be found such that AB =1 = BA, then A is invertible and A~! = B.

Example 2.4.8

If A is an invertible matrix, show that the transpose AT is also invertible. Show further that

the inverse of AT is just the transpose of A~!; in symbols, (AT)~! = (A=1)T,

Solution. A~! exists (by assumption). Its transpose (A~!)7 is the candidate proposed for
the inverse of AT. Using the inverse criterion, we test it as follows:

ATA N =1 =1T =1
(A—l)TAT — (AA—I)T =IT —7

Hence (A~1)7 is indeed the inverse of AT; that is, (A7)~ = (A~1)T.

\. J
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Example 2.4.9

If A and B are invertible n x n matrices, show that their product AB is also invertible and
(AB)~!' =B~ 1A-1,

Solution. We are given a candidate for the inverse of AB, namely B~'A~!. We test it as
follows:

(B'A™HYAB) =B '(A'A)B=B"'IB=B"'B=1
ABYB A =ABB HaA ' =a1A" ' =4A"1 =1

Hence B~'A! is the inverse of AB; in symbols, (AB)~! =B~ 1A~1.

We now collect several basic properties of matrix inverses for reference.

Theorem 2.4.4

All the following matrices are square matrices of the same size.
1. I is invertible and I"' =1.
2. If A is invertible, so is A~!, and (A=1)~1 = A.
3. If A and B are invertible, so is AB, and (AB)~! =B~1A~1
4. If Ay, Ao, ..., Ay are all invertible, so is their product AjA;--- Ay, and

(AA--Ay) T =4 A AL

5. If A is invertible, so is A* for any k > 1, and (AK)~! = (A=1)k,
6. IfA is invertible and a # 0 is a number, then aA is invertible and (aA) ™! = 1A~

7. If A is invertible, so is its transpose AT, and (AT)~! = (A=1)T.

Proof.
1. This is an immediate consequence of the fact that 1> =1.

2. The equations AA~! =1 = A~!A show that A is the inverse of A~!; in symbols, (A~!)~! = A.
3. This is Example 2.4.9.
4

. Use induction on k. If k=1, there is nothing to prove, and if k =2, the result is property
3. If k > 2, assume inductively that (AjAy---Ag_;)~! =A,:_11 -~-A2_1A1_1. We apply this fact
together with property 3 as follows:

[A1Ar A1 A = [(A1Ar A1) Ar] !
ZA,jl(A1A2-~~Ak_1)_1

11 1,1

=A; (Akq"'Az Ay )
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So the proof by induction is complete.
5. This is property 4 with A| =A; =--- =Ay =A.
6. This is left as Exercise 2.4.29.

7. This is Example 2.4.8. n

The reversal of the order of the inverses in properties 3 and 4 of Theorem 2.4.4 is a consequence
of the fact that matrix multiplication is not commutative. Another manifestation of this comes
when matrix equations are dealt with. If a matrix equation B = C is given, it can be left-multiplied
by a matrix A to yield AB = AC. Similarly, right-multiplication gives BA = CA. However, we cannot
mix the two: If B=C, it need not be the case that AB = CA even if A is invertible, for example,

11 0 0
A‘[o 1}’3_{1 o}_c'

Part 7 of Theorem 2.4.4 together with the fact that (AT)” = A gives

Corollary 2.4.1

A square matrix A is invertible if and only if AT is invertible.

Example 2.4.10

Find A if (AT —21)~! = { _f (1)}

Solution. By Theorem 2.4.4(2) and Example 2.4.4, we have

<AT—2I>=[(AT—2I>‘I]_1=[_f (1)]_1:[(1) _”

HenceAT:2I+[0 -1 } 2{2 -1 ],soAz [ _?

1
1 2 1 4 ] by Theorem 2.4.4(7).

4

The following important theorem collects a number of conditions all equivalent? to invertibility.
It will be referred to frequently below.

Theorem 2.4.5: Inverse Theorem

The following conditions are equivalent for an n X n matrix A:

1. A is invertible.

2. The homogeneous system Ax = 0 has only the trivial solution x = 0.

91f p and g are statements, we say that p implies ¢ (written p = q) if ¢ is true whenever p is true. The statements
are called equivalent if both p = ¢ and ¢ = p (written p < ¢, spoken “p if and only if ¢”). See Appendix ?7.
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3. A can be carried to the identity matrix I, by elementary row operations.
4. The system Ax = b has at least one solution x for every choice of column b.

5. There exists an n X n matrix C such that AC = I,.

Proof. We show that each of these conditions implies the next, and that (5) implies (1).

(1) = (2). If A~ exists, then Ax =0 gives x=I,x =A"'Ax=A"10=0.

(2) = (3). Assume that (2) is true. Certainly A — R by row operations where R is a reduced,
row-echelon matrix. It suffices to show that R =1I,. Suppose that this is not the case. Then R has
a row of zeros (being square). Now consider the augmented matrix [ A ‘ 0 } of the system Ax = 0.
Then [ A ‘ 0 } — [ R ‘ 0 } is the reduced form, and [ R ‘ 0 ] also has a row of zeros. Since R is
square there must be at least one nonleading variable, and hence at least one parameter. Hence the
system Ax = 0 has infinitely many solutions, contrary to (2). So R = I, after all.

(3) = (4). Consider the augmented matrix [ A | b | of the system Ax =b. Using (3), let A — 1,
by a sequence of row operations. Then these same operations carry [ A ‘ b } — [ I, ‘ ¢ } for some
column c. Hence the system Ax =b has a solution (in fact unique) by gaussian elimination. This
proves (4).

(4) = (5). Write I,, = [ e e - e, ] where e, ey, ..., e, are the columns of I,,. For each
j=1,2, ..., n, the system Ax =e; has a solution c; by (4), soAc;=ej. NowletC=[¢c; ¢ -+ ¢, |
be the n x n matrix with these matrices c; as its columns. Then Definition 2.9 gives (5):

AC:A[cl Cy - cn]:[Acl Acy - Acn]:[el e - en}:In

(5) = (1). Assume that (5) is true so that AC = I, for some matrix C. Then Cx =0 implies x =0
(because x = I,x = ACx = A0 = 0). Thus condition (2) holds for the matrix C rather than A. Hence
the argument above that (2) = (3) = (4) = (5) (with A replaced by C) shows that a matrix C’
exists such that CC' =1I,. But then

A=Al,=A(CC) = (AC)C' =1,C'=C

Thus CA = CC' = I,, which, together with AC = I, shows that C is the inverse of A. This proves (1).
]

The proof of (5) = (1) in Theorem 2.4.5 shows that if AC = I for square matrices, then necessarily
CA =1, and hence that C and A are inverses of each other. We record this important fact for
reference.

Corollary 2.4.1

If A and C are square matrices such that AC = I, then also CA = 1. In particular, both A and
C are invertible, C=A"! and A=C"'.

Here is a quick way to remember Corollary 2.4.1. If A is a square matrix, then

1. fAC=Ithen C=A"".
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2. IfCA=1Ithen C=A"",

Observe that Corollary 2.4.1 is false if A and C are not square matrices. For example, we have

-1 1
=L but 1 -1 “f”#k
0 1

| — |
—
—_ N
—
—_

(a)

—_ =

In fact, it is verified in the footnote on page 91 that if AB =1, and BA = I, where A is m x n and
B is n xm, then m =n and A and B are (square) inverses of each other.

An n x n matrix A has rank n if and only if (3) of Theorem 2.4.5 holds. Hence

Corollary 2.4.2
An n x n matrix A is invertible if and only if rank A = n.

Here is a useful fact about inverses of block matrices.

Example 2.4.11

A X A 0
LetP—[0 B]andQ—{Y B

(possibly m # n).

} be block matrices where A is m xm and Bisnxn

a. Show that P is invertible if and only if A and B are both invertible. In this case, show
that X | .
i _ {A‘ —A"1XB~ ]
0 B!

b. Show that Q is invertible if and only if A and B are both invertible. In this case, show
that .
A~ 0
—1 o
Q - |: _B—IYA—I B—l :|

Solution. We do (a.) and leave (b.) for the reader.

Al —A"xB!
0 B!
multiplication, one verifies that PR = I,,., = RP, so P is invertible, and P~! = R.

cC Vv |.
W D ] in block form,

a. If A=! and B! both exist, write R = { ] . Using block

Conversely, suppose that P is invertible, and write P~! = [
where C is m x m and D is n X n.

Then the equation PP~ = wtm becomes

=~ o
_

0 B W D BW BD

{A ch V]:{ACJFXW AV+XD}:m+n:{I(,),,
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using block notation. Equating corresponding blocks, we find
AC+XW =1,, BW =0, andBD=1I,

Hence B is invertible because BD = I, (by Corollary 2.4.1), then W = 0 because
BW =0, and finally, AC =1, (so A is invertible, again by Corollary 2.4.1).

Inverses of Matrix Transformations

Let T =T, : R" — R" denote the matrix transformation induced by the n x n matrix A. Since A is
square, it may very well be invertible, and this leads to the question:

What does it mean geometrically for T that A is invertible?

To answer this, let 7" = T,-1 : R” — R" denote the transformation induced by A~!. Then

T'[T(x)]|=A""[Ax] = Ix =x
for all x in R” (2.8)
TT'(x)]=A[A"x] =Ix=x

The first of these equations asserts that, if T carries x to a vector T(x), then T’ carries T (x) right
back to x; that is T’ “reverses” the action of T. Similarly T “reverses” the action of T’. Conditions
(2.8) can be stated compactly in terms of composition:

T'oT =1pn and ToT =I1pn (2.9)

When these conditions hold, we say that the matrix transformation 7’ is an inverse of T, and we
have shown that if the matrix A of T is invertible, then T has an inverse (induced by A~1).

The converse is also true: If T has an inverse, then its matrix A must be invertible. Indeed,
suppose S : R" — R" is any inverse of T, so that SoT = 1r, and T oS = 1g, . It can be shown that
S is also a matrix transformation. If B is the matrix of S, we have

BAx =S[T(x)]=(SoT)(x) = lgn(x) =x=1I,x for all x in R"

It follows by Theorem 2.2.6 that BA = I, and a similar argument shows that AB =1,,. Hence A is
invertible with A~! = B. Furthermore, the inverse transformation S has matrix A~!, so § = T’ using
the earlier notation. This proves the following important theorem.

Theorem 2.4.6

Let T : R" — R" denote the matrix transformation induced by an n X n matrix A. Then
A is invertible if and only if T has an inverse.

In this case, T has exactly one inverse (which we denote as T~'), and T~ : R* — R" is the
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transformation induced by the matrix A~'. In other words

(Ta) ' =Ty

The geometrical relationship between T and T~! is embodied in equations (2.8) above:
T-'T(x)]=x and T [T_l(x)} =x for all x in R"

These equations are called the fundamental identities relating 7 and T~!. Loosely speaking,
they assert that each of T and T~! “reverses” or “undoes” the action of the other.

This geometric view of the inverse of a linear transformation provides a new way to find the
inverse of a matrix A. More precisely, if A is an invertible matrix, we proceed as follows:

1. Let T be the linear transformation induced by A.
2. Obtain the linear transformation T~' which “reverses” the action of T.

3. Then A~ is the matriz of T~

Here is an example.

Example 2.4.12

Find the inverse of A = [ (1) (1) } by viewing it as a linear

transformation R? — R2.

Solution. If x= | * | the vector Ax = O e )
y 10 y X

is the result of reflecting x in the line y = x (see the diagram).
Hence, if Q; : R> — R? denotes reflection in the line y = x,
then A is the matrix of Q;. Now observe that Q; reverses itself
because reflecting a vector x twice results in x. Consequently
Ql_1 = Q. Since A~! is the matrix of Ql_1 and A is the matrix of Q, it follows that A~! = A.
Of course this conclusion is clear by simply observing directly that A% =1, but the geometric
method can often work where these other methods may be less straightforward.

Exercises for 2.4




Exercise 2.4.1 In each case, show that the matri-
ces are inverses of each other.

L33 2 -5

Lt 2p|-1 3

(3 0] [4 O
b'_1—4]’2[1—3]
(120 7 —6
c. |0 23|, |-3 -1 3
|1 3 1 2 1 =2
(30 10
“Loshlot]

Exercise 2.4.2 Find the inverse of each of the fol-
lowing matrices.

[ 1 -1 4 1
R 3} b)[32}
10 -1 1 -1 2
| 3 2 ofa|-5 7 -1
-1 -1 0 2 3 -5
(35 0] (3 1 —1]
e) |3 71 Hl21 0
12 1| 15 —1 |
2 4 1] 31 I
g |33 2 |52 0
|4 1 4 11 -1
- (-1 4 5 2
bz . 0 0 0 -1
i |1 -1 3 j)
L a4 1 -2 =2 0
. 0 -1 -1 0
"1 07 s 1200 0
0 13 e 01300
k) D loo1 50
1 -1 52
L1 s 00017
- (000 0 1
2 -1
1
T
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1 4 —1
1
Ll -2 2 2
—9 14 —1
2 0 —2
h. 3| -5 2 5
3 2 —1
T 0 0 1 -2
1 -2 -1 -3
] 1 2 1 2
0 -1 0 0
1 -2 6 —30 210
0 1 -3 15 —105
Llo o 1 -5 35
0o 0 0 1 -7
0 0 0 1

Exercise 2.4.3 In each case, solve the systems
of equations by finding the inverse of the coefficient

matrix.
a) 3x— y=5 b) 2x—3y=0
2x+2y=1 x—4y=1
c) x+ y+2z= 5 d) x+4y+2z= 1

x+ y+ z= 0
x+2y+4z=-2

2x+3y+3z=-1
dx+ y+4z= 0

b -X :l 4 *3 0 :l *3
Cly TS 21 ] T =2
[ x 9 —14 6 1
d |y | =1 4 -4 1 1| =
| 2 -10 15 -5 0
23
1
5 8
-25
1 -1 3
Exercise 2.4.4 Given A~! = 2 05
—1 1 0
1
a. Solve the system of equations Ax = | —1
3
b. Find a matrix B such that
1 -1 2
AB=|[0 1 1
1 00
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c. Find a matrix C such that

1 2 -1
ca=ly 1 1)

4 -2 1
b. B=A"'AB = 7 2 4
-1 2 -1

Exercise 2.4.5 Find A when

2 -1 3
b. A=5| 0 1 1]
-2 1 -1
X 3 -1 2 Vi
Exercise 2.4.7 Given | x, | =] 1 0 4 2
X3 2 1 0 3
21 I -1 1 Vi
and | 2o | = 2 -3 0 y2 |, express the
23 -1 1 -2 y3

variables x1, x», and x3 in terms of z;1, 2o, and z3.

-1 .
- E 2.4.8
a) (34)! = 1 b) (24)7 = 1 1 xercise

0 27 3x+4y=17
0 a. In the system rray= , substitute the new

c) (I+34)7!= [1 1} 4x+5y=1
- . , ;. x=-5x+4y
variables x' and y' given by Y= 4Y 3y

b w7 ]
49 )
460
vt

1 -1 3 01 —1
a)A =2 1 1|bAl=|12 1
0 -2 1 0 1

Then find x and y.

b. Explain part (a) by writing the equations as

OHHEIBRIR

is the relationship between A and B?

b. A and B are inverses.

Exercise 2.4.9 In each case either prove the as-
sertion or give an example showing that it is false.

a. If A+#0is a square matrix, then A is invertible.

b. If A and B are both invertible, then A + B is
invertible.

c. If A and B are both invertible, then (A~!B)”
is invertible.

d. If A* =3I, then A is invertible.
e. If A2 =A and A # 0, then A is invertible.
f. If AB= B for some B # 0, then A is invertible.

g. If A is invertible and skew symmetric (AT =
—A), the same is true of A~

h. If A% is invertible, then A is invertible.

i. If AB=1, then A and B commute.



1 0

I+[o 1]

f. False. A=B= [ (l) 8 }
h. True. If (A%2)B =1, then A(AB) = I; use Theo-
rem 2.4.5.

Exercise 2.4.10

a. If A, B, and C are square matrices and AB =1,
I =CA, show that A is invertible and B=C =

AL

b. If C~' = A, find the inverse of CT in terms of
A.

b. (CT)~! = (cHT = AT because C~! =
A h't=a

Exercise 2.4.11 Suppose CA =1, where Cismxn
and A is n x m. Consider the system Ax =b of n
equations in m variables.

a. Show that this system has a unique solution
CB if it is consistent.

2 -3
b. IfC:[g _8 _” and A= |1 =2,
6 —10
find x (if it exists) when
1 7
(i)b=1] 0 |;and (ii) b= | 4
3 22
. . .. X1 2
b. (i) Inconsistent. (ii) [ ] = [ ]
X7 —1
. . 1 -1 .
Exercise 2.4.12 Verify that A = { 0 2 ] satis-

fies A2 —3A 421 =0, and use this fact to show that
A7l =1(31-A).
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[« —b —c —d
. b a —d ¢
Exercise 2.4.13 Let Q= . J . —b

| d —c b a

Compute QQT and so find Q7! if Q #0.

[0 1
1 0

cach of U, —U, and —b is its own inverse and that

the product of any two of these is the third.

11
-1 0

0
1 |. Find the in-
0

Exercise 2.4.14 Let U =

} . Show that

Exercise 2.4.15 Consider A = [

0 1
B:[(l) _H,cz 00
50

6.

verses by computing (a) A% (b) B* and (c) C3.

4 _ -1 _ p3 _ 01
b. B*=1,s0 B~ =B —[_1 0}
1 01
Exercise 2.4.16 Find the inverseof | ¢ 1 ¢
3 ¢ 2
in terms of c.
[ 22 — 1
—c 1 0
| 3-c2 ¢ -1
Exercise 2.4.17 If ¢ # 0, find the inverse of
1 -1 1
2 —1 2 | in terms of c.
| 0 2 ¢

Exercise 2.4.18 Show that A has no inverse when:

a. A has a row of zeros.
b. A has a column of zeros.

each row of A sums to 0.
[Hint: Theorem 2.4.5(2).]

o

d. each column of A sums to 0. [Hint: Corol-

lary 2.4.1, Theorem 2.4.4.]

=

If column j of A is zero, Ay = 0 where y is
column j of the identity matrix. Use Theo-
rem 2.4.5.
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d. If each column of A sums to 0, XA =0 where Exercise 2.4.22 Find the inverse of the x-

Exercise 2.4.19 Let A denote a square matrix.

a. Let YA =0 for some matrix Y # 0. Show that

X is the row of 1s. Hence ATXT =0 so A has expansion in Example 2.2.16 and describe it geomet-
no inverse by Theorem 2.4.5 (X7 #0). rically.

IfA:[

a O
0 1

x-compression because i < 1.

1
],a>l, thenA‘lz[g (1)] is an

Exercise 2.4.23 Find the inverse of the shear

Ah i . [Hint: Corollary 2.4.1, The-
as no inverse. [Hint: Corollary ¢ transformation in Example 2.2.17 and describe it ge-

orem 2.4.4.] )
ometrically.
b U b hat (i (1) _} i Exercise 2.4.24 In each case assume that A is
- Use part (a) to show that (i) 1 0 2 ' a square matrix that satisfies the given condition.
Show that A is invertible and find a formula for A~!
2 1 -l in terms of A.
and (ii) [ 1 1 O | have no inverse. [Hint:
10 -1 a. A3—3A+21=0.
For part (ii) compare row 3 with the difference
between row 1 and row 2.] b. A*4+24° —A—41=0.
- 1743
b. (i) (=1, 1, HA=0 b. A7l = (A% +24° 1)
Exercise 2.4.20 If A is invertible. show that Exercise 2.4.25 Let A and B denote n x n matrices.
a) A2 40, b) A £ 0 for all a. If A and AB are invertible, show that B is
k=12 invertible using only (2) and (3) of Theo-
rem 2.4.4.
b. If AB is invertible, show that both A and B are
invertible using Theorem 2.4.5.
b. Each power A* is invertible by Theorem 2.4.4

(because A is invertible). Hence A* cannot be
0.

Exercise 2.4.21 Suppose AB =0, where A and B b. If Bx =0, then (AB)x = (A)Bx =0, so x=0

are square matrices. Show that: because AB is invertible. Hence B is invertible
by Theorem 2.4.5. But then A = (AB)B~! is
a. If one of A and B has an inverse, the other is invertible by Theorem 2.4.4.
Zero.
o ) ) Exercise 2.4.26 In each case find the inverse of
b. It is impossible for both A and B to have in- the matrix A using Example 2.4.11.
verses.
-1 1 2 31 0
¢. (BAY=0. a)A=| 02 —1| b)A=[52 0
01 —1 1 3 -1
3 400
2 300
b. By (a), if one has an inverse the other is zero c) A= 1 =1 1 3
and so has no inverse. 3 1 1 4
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2 1 2
1 1 -1 0
d) 4= 00 —1
00 1 -2 b. A[B(AB)™']=1=[(BA)"'B]A, so A is invertible
by Exercise 2.4.10.
Exercise 2.4.31 Let A and B denote invertible
[ 2 —1 0 n X n matrices.
b -5 3
| —13 8| -1 a. If A7' = B!, does it mean that A = B? Ex-
plain.
1 —1| —14 8
] 2 16 —9 b. Show that A = B if and only if A-'B=1.
d. 0 0 2 -1
0 0 1 =1 Exercise 2.4.32 Let A, B, and C be n X n matrices,

with A and B invertible. Show that

Exercise 2.4.27 If A and B are invertible symmet-

: —1

ric matrices such that AB = BA, show that A*I, AB, a. If"z commutes with C, then A~ commutes
AB~!' and A7'B~! are also invertible and symmet- with C.

ric. b. If A commutes with B, then A~! commutes

Exercise 2.4.28 Let A be an n x n matrix and let with B~!.
I be the n x n identity matrix.

a. If A> =0, verify that (I —A)~! =1 +A.

b. If A3 =0, verify that (I —A)"! =T+A+4 A% a. Have AC = CA. Left-multiply by A~ to get
C =A"'CA. Then right-multiply by A~ to
12 -1 get CA"l =A~!C.
c. Find the inverse of | 0 1 3
00 1

Exercise 2.4.33 Let A and B be square matrices

f th ize.
d. If A" =0, find the formula for (I—A)"!. ob the same s1z€

a. Show that (AB)? = A2B? if AB = BA.

b. If A and B are invertible and (AB)?> = A%B?,
show that AB = BA.
d. IfA"=0, [-A) ' =1+A+---+A" L.

10 11
c. IfA—[O O]andB—[O 0],Sh0wthat

Exercise 2.4.29 Prove property 6 of Theo- (AB)? = A2B? but AB +# BA.
rem 2.4.4: If A is invertible and a # 0, then aA is
invertible and (aA)~! = éAil

Exercise 2.4.30 Let A, B, and C denote n x n ma-

trices. Using only Theorem 2.4.4, show that: ) ) |

b. Given ABAB = AABB. Left multiply by A7,
. . -1

a. If A, C, and ABC are all invertible, B is invert- then right multiply by B~".

ible.
Exercise 2.4.34 Let A and B be n x n matrices for

b. If AB and BA are both invertible, A and B are which AB is invertible. Show that A and B are both
both invertible. invertible.
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If Bx =0 where x is nx 1, then ABx =0 so x =0 Exercise 2.4.39 An n xn matrix P is called an
as AB is invertible. Hence B is invertible by Theo- idempotent if P> = P. Show that:
rem 2.4.5, so A = (AB)B~! is invertible.

a. I is the only invertible idempotent.

1 3 -1
Exercise 2.4.35 Consider A= | 2 ! S b. P is an idempotent if and only if / — 2P is self-
I -7 13 inverse.
11 2
B= 0 -3 |. c. U is self-inverse if and only if U =1—2P for
-2 5 17 some idempotent P.
a. Show that A is not invertible by finding a d. I—aP is invertible forPany a # 1, and that
nonzero 1 x 3 matrix Y such that YA = 0. (I—aP) ' =1+ (:%)".
[Hint: Row 3 of A equals 2(row 2) —3(row 1).]
b. Show that B is not invertible. [Hint: Column
3 =3(column 2) — column 1.]
b. (I —2P)> =1—4P+4P?, and this equals I if
and only if P> = P.
-1 Exercise 2.4.40 If A> =kA, where k # 0, show that
b. B 3 | =0 so B is not invertible by Theo- A is invertible if and only if A = kI.
. Exercise 2.4.41 Let A and B denote n X n invert-
rem 2.4.5.

Exercise 2.4.36 Show that a square matrix A
is invertible if and only if it can be left-cancelled:

ible matrices.

a. Show that A™'+B~ ' =A~'(A+B)B~\.

AB = AC implies B=C. b. If A+ B is also invertible, show that A~' +B~!
Exercise 2.4.37 If U?> =1, show that I+ U is not is inV(lertible and find a formula for (A~'+
invertible unless U = I. B~

Exercise 2.4.38

a. If J is the 4 x 4 matrix with every entry 1, show

17 ; . .
that I — 5J is self-inverse and symmetric. b. (A‘l +B_1)_1 _ B(A+B)_1A

. If X is n x m and satisfies X” X = I,, show that

I, —2XXT is self-inverse and symmetric. Exercise 2.4.42 Let A and B be n X n matrices,
and let I be the n x n identity matrix.

a. Verify that A(/+BA) = (I+AB)A and that
(I+BA)B = B(I +AB).

. Write U = I, —2XXT.  Then UT =1I —

2XTTXT = Uy, and U? =17 — (2XX")I, — b. If 1+ AB is invertible, verify that I+ BA is
L(2XXT) + 4(xxT)y(xxT) = I, — 4xxT + also invertible and that (I+BA)~! =1—B(I +
axx" =1,. AB)7'A.
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